

GEODESIA GLOBAL DAS NAÇÕES UNIDAS CENTRO DE EXCELÊNCIA

MODERNIZAÇÃO DO SISTEMA DE REFERÊNCIA
GEOESPACIAL
OFICINA DE DESENVOLVIMENTO DE CAPACIDADES

Ajustes geodésicos nacionais

Nicholas Brown Chefe do Gabinete, UN-GGCE

Dia 2, Sessão 2 [2_2_1]

Agradecimentos: Phil Collier (AUS); Nic Donnelly (NZ); Roger Fraser (AUS); Craig Harrison (AUS); Anna Riddell (AUS).

Summary

- A national geodetic adjustment is the process used to define or refine the coordinates of survey marks in a country.
- The adjustment procedure optimizes the accuracy of the coordinates and ensures consistency with regional and international reference frames.
- A new national geodetic adjustment can be done to align with new versions of ITRF or accommodate a new or denser national GNSS CORS network.

When to consider performing a national geodetic adjustment

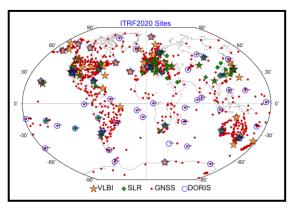
- Datum not aligned with current version of ITRF
- Distortion in datum due to geophysical reasons
- Increase in accuracy of datum is needed for emerging technologies
- GNSS CORS network has been densified (improved resolution)

Como alinhar o NGD com o ITRF

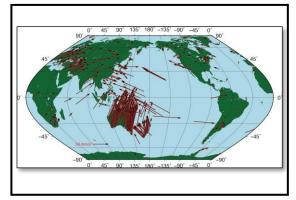
ITRF2020

VLBI + SLR + GNSS + DORIS

Sistema de Referência Regional


GNSS

Rede Nacional GNSS


GNSS

Repositório de Dados Geodésico Nacional

GNSS + Terrestre

- Sistema de Referência
 Terrestre Internacional
- Dependente do tempo
- Desenvolvido pela IAG Services

- Sistema de Referência da Ásia-Pacífico
- Dependente do tempo
- Desenvolvido por organizações científicas regionais (Geoscience Australia)

- Rede australiana GNSS CORS na placa continental australiana
- Dependente do tempo
- Desenvolvido por organizações científicas regionais (Geoscience Australia)

- Ajuste geodésico australiano
- Restrito à rede GNSS CORS na placa continental australiana
- Repositório de dados dependentes do tempo (ATRF) e repositório de dados estáticos (GDA2020)
- Desenvolvido por organizações científicas regionais (Geoscience Australia)

Como alinhar uma rede GNSS nacional ao ITRF

1. Selecione Estações de Referência Globais:

- Selecione um conjunto de estações GNSS globais e regionais bem distribuídas com coordenadas conhecidas no ITRF2020.
- Obtenha os dados de observação RINEX correspondentes para essas estações de referência nos centros de dados IGS (por exemplo, CDDIS).
- Acesse produtos GNSS de alta qualidade fornecidos pelo Serviço Internacional de GNSS (IGS), incluindo órbitas precisas, relógios de satélites e estações e Parâmetros de Rotação da Terra (ERPs), todos consistentes com o ITRF2020.

2. Processe sua rede GNSS nacional com o software GNSS:

- Use software de processamento GNSS de alta precisão (por exemplo, Bernese, GAMIT/GLOBK, GIPSY).
- Em seu processamento:
 - Inclua suas estações GNSS nacionais juntamente com as estações de referência ITRF2020 selecionadas em uma solução combinada.
 - Corrija as órbitas, relógios e ERPs fornecidos pelo IGS para garantir o alinhamento com o ITRF2020.
 - Restrinja (ou fixe) as coordenadas das estações de referência a seus valores ITRF2020 publicados.
- Através do processamento combinado e das restrições, suas estações GNSS nacionais serão posicionadas em relação ao sistema de referência fixo, alinhandoas assim com o ITRF2020.

As coordenadas de saída de suas estações nacionais serão expressas no sistema de referência ITRF2020.

 No caso dos países da Ásia-Pacífico, você poderia usar todas ou um subconjunto das estações APREF.

- Obtenha os dados RINEX da Geoscience Australia, que é um centro de dados regional do IGS.
- Acesse produtos GNSS de alta qualidade fornecidos pelo Serviço Internacional de GNSS (IGS), incluindo órbitas precisas, relógios de satélites e estações e Parâmetros de Rotação da Terra (ERPs), todos consistentes com o ITRF2020.
- Essa etapa requer algum conhecimento especializado sobre processamento GNSS.
- Considere estabelecer uma parceria com outro país que tenha competências nessa área.

Regional Reference Frame

National GNSS Network

ITRF2020

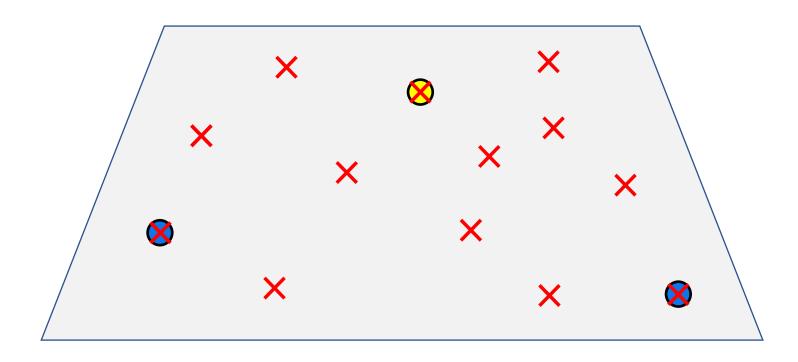
Como alinhar o NGD com o ITRF

Realizar um ajuste geodésico nacional:

- Utilizar as coordenadas das estações da Rede Nacional GNSS como pontos de controle/repositório de dados em um ajuste geodésico nacional abrangente.
- Integrar todos os dados geodésicos nacionais disponíveis num ajuste geodésico nacional (GNSS, terrestre, nivelamento, etc.) para estabelecer repositórios de dados geodésicos nacionais consistentes e modernos, alinhados com o ITRF2020.
- Isso pode ser feito usando um software como o DynAdjust.
- Isso propaga as coordenadas da estação GNSS até as marcas de levantamento locais.

National GNSS Network

National Geodetic

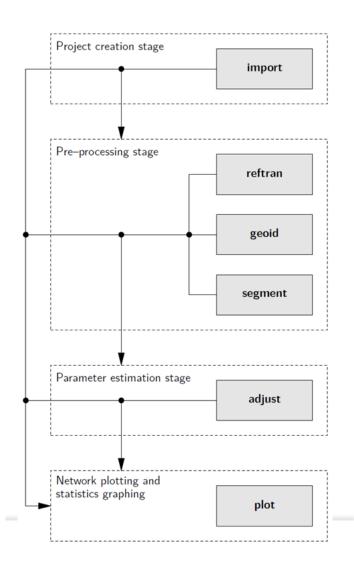

Datum

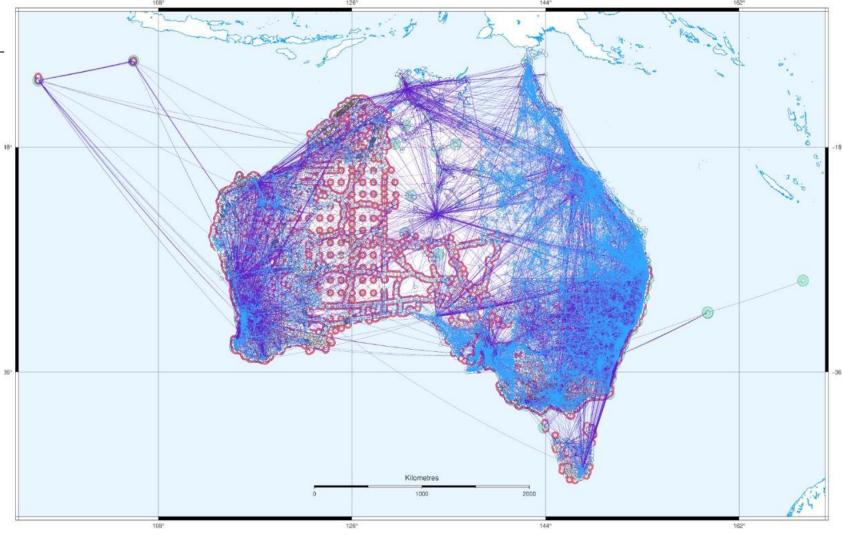
GNSS

GNSS + Terrestrial

Como alinhar o NGD com o ITRF

- GNSS CORS incluído no sistema de referência internacional ou regional
- GNSS CORS incluído na Eede Nacional de GNSS
- Notas da pesquisa nacional




Abordagem de ajuste totalmente automatizada

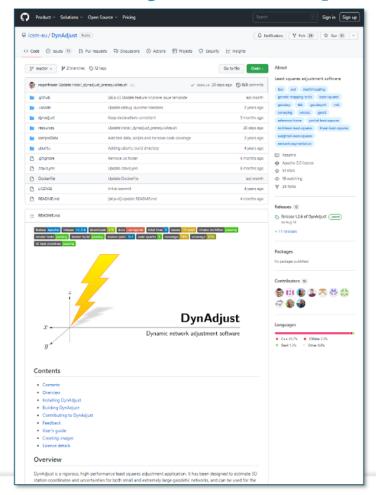
- Importar todos os dados
 - SINEX, linhas de base GNSS, medições terrestres, nivelamento
- Alinhe estações e medições a uma época (por exemplo, 2020)
 - Transformação de repositório de dados/sistemas (ITRF2000, 2005, 2008, 2014)
 - Aplicar modelo de movimento da placa se não houver parâmetros diretos disponíveis
- Aplicar modelo geoidal para converter dados ortométricos em elipsoidais
 - (Gravidade) deflexões da vertical
 - Separações elipsóide-geóide
- Segmentação automática da rede
- Ajuste paralelo ou sequencial em fases
- Incertezas nas exportações

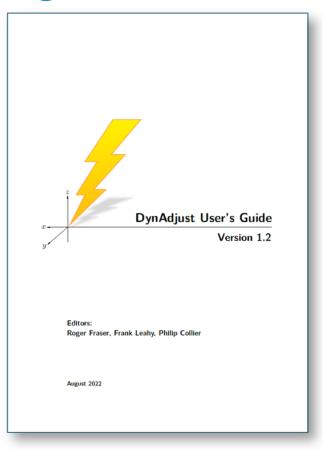
Ajuste nacional

333,164	Stations
2,400,419	Measurements
1,542	Geodetic azimuth
132	Astronomic azimuth
215	Zenith angle
484,696	Direction set
201,213	MLS arc
186,479	Ellipsoid arc
46,464	Slope distance
1,171,545	GNSS baseline
89,175	GNSS baseline cluster
2,178	GNSS point cluster
230	Ellipsoid height
204,178	Orthometric height
12,372	Level difference

DynAdjust

DynAdjust: open source adjustment package





Generic Mapping Tools

Recursos

- Análise GNSS
 - BERNESE análise de rede GNSS
 - AUSPOS Análise de localização por GPS https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos
 - OPUS Análise do local GNSS https://geodesy.noaa.gov/OPUS/
- Verificação da qualidade do GNSS (Anubis) https://gnutsoftware.com/software/anubis/
- Verificação, reparo e manipulação de GNSS https://kg4-dmz.gfz-potsdam.de/services/gfzrnx
- Ajuste geodésico
 - DynAdjust (https://github.com/icsm-au/DynAdjust)
- Apresentação do treinamento em mínimos quadrados
 - Apresentação completa https://www.youtube.com/watch?v=T5YB_1Jpjp0 (1h 42 min)
 - Capítulo 1 O que é o método dos mínimos quadrados e por que o utilizamos no DCM? https://youtu.be/0YkjHsVgGMk (26 minutos)
 - Capítulo 2 Por que iteramos? https://youtu.be/ iFg3Ho cRI (18 minutos)
 - Capítulo 3 Ponderação de observações https://youtu.be/2yQCWblrQGs (10 minutos)
 - Capítulo 4 Restrições https://youtu.be/WcwKv-vWUtk (7 minutos)
 - Perguntas e respostas sobre o DynAdjust https://youtu.be/WZN38NrPBeY

